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A two-dimensional model of flow and bed topography in sinuous channels with 
erodible boundaries is developed and applied in order to investigate the mechanism 
of meander initiation. By reexamining the problem recently tackled by Ikeda, Parker 
t Sawai (1981), a previously undiscovered ‘resonance ’ phenomenon is detected which 
occurs when the values of the relevant parameters fall within a neighbourhood of 
certain critical values. It is suggested that the above resonance controls the bend 
growth, and it is shown that it is connected in some sense with bar instability. In  
fact, by performing a linear stability analysis of flow in straight erodible channels, 
resonant flow in sinuous channels is shown to occur when curvature ‘forces’ a 
‘natural ’ solution represented by approximately steady perturbations of the alternate 
bar type. A comparison with experimental observations appears to support the idea 
that resonance is associated with meander formation. 

1. Introduction 
Theoretical attempts to give a mechanistic justification of fluvial meandering have 

proliferated in the last two decades. Most of the theories, which derived from the 
original works of Hansen (1967) and Callander (1969), actually treated the formation 
of alternate bars in a straight alluvial channel with non-erodible banks. The works 
of Adachi (1967), Hayaahi (1971), Sukegawa (1971), Engelund t Skovgaard (1973), 
Parker (1975, 1976), Hayashi t Ozaki (1976, 1980) and Fredsrae (1978) have 
developed an increMingly deeper understanding of the instability process that leads 
to the flow winding about bars with the channel axis keeping straight. In particular, 
Fredsm’s theory, which appears to be the most successful attempt, shows that the 
ingredients necessary to explain the basic bar-instability mechanism are friction, 
inertial effects involving the transverse velocity, and sediment transport evaluated 
by taking into account the effect of transverse bed slope. Furthermore, the theory 
can predict whether an alluvial stream remains straight, tends to develop alternate 
bars or tends to braid. 

In  all the above contributions the ability of a stream to develop alternate bars is 
taken as implying incipient meandering. Recently Ikeda, Parker t Sawai (1981) 
following ideas originally put forward by Ikeda, Hino & Kikkawa (1976), tackled the 
problem of meander formation from an apparently different point of view. By 
relaxing the restraint of fixed sidewalls, Ikeda et al. (1981) investigated the stability 
of channels with sinuous erodible banks and found conditions for the lateral bend 
amplitude to grow. The main conclusion of this theory is that ‘bar’ and ‘bend’ 
instabilities operate at similar wavelengths when sinuosity is not too large. This would 
provide justification for the assumption, implicit in previous works, that alternate 
bar formation eventually leads to a meandering channel with an initial wavelength 
close to that of alternate bars. 
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The above results were based on a two-dimensional model of quasisteady shallow- 
water flow in a sinuous channel with small curvature, which can be shown (see $4) 
to be formally valid for meander wavelengths much larger than the channel width. 
Typical bar perturbations may have wavelengths ranging from four to twelve channel 
widths. Thus, in order to compare more closely the results of the two theories, it  would 
seem more convenient to employ a model for fully developed flow in sinuous channels 
with small curvature, relaxing the abovementioned condition on the meander length. 
Indeed a ‘bend ’ theory based on such a model reveals some previously undiscovered 
features, which lead to the establishment of a connection with ‘bar’ theories. In fact, 
there appear to be critical conditions for the flow in the bend such that a resonance 
phenomenon occurs. We will show that, under these circumstances, curvature forces 
a ‘natural ’ solution which represents a quasisteady bar perturbation. Thus it emerges 
that ‘bend’ instability does not select the most unstable wavelength of ‘bar’ 
instability, but rather that which is nearest to resonance for any given set of flow 
parameters. We show that the wavelengths selected by this mechanism are about 
three times as large as those predicted by traditional ‘bar’-stability theories, and 
correspond to approximately steady perturbations. 

The above findings raise the delicate question of understanding which of the two 
mechanisms controls the selection of wavelength in the process of meander formation. 
In fact, there is vast experimental and field evidence of alternate bar formation 
in approximately straight channels. However, even in the ideal case of a steady-flow 
regime, the details of the process that leads from the straight configuration with 
alternate bar propagation to the quasisteady flow in the meandering channel are not 
clear. The interesting experimental work by Kinoshita & Miwa (1974) has thrown 
some light on the particular case when the meandering channel is forced to have a 
constant wavelength equal to that of the alternate bars expected to form. Under these 
circumstances the above authors show that there is a critical sinuosity beyond which 
alternate bars are stabilized. However, this finding still leaves unsolved the problem 
of understanding the transitional process of ‘ bend ’ development and its possible 
interaction with bar propagation. In this respect some interesting field observations 
were performed by Lewin (1976) on a gravel-bed river whose development from an 
artificially straightened configuration to a meandering pattern was followed for a 
period of about one year. The channel was active only occasionally during high-stage 
flows. The observations showed that a meandering pattern developed with a 
wavelength which “ . . .came to exceed twice the spacing of initial bars. . .These 
features suggest a loosening of the initial dimensional control of bar spacing. . . ” 
(Lewin 1976, p. 284). Definite conclusions about the wavelength eventually selected 
by the transitional process following the initial ‘bar’ perturbation cannot be drawn 
because the meandering pattern was still developing when artificial restraightening 
occurred. However, the trend described by Lewin’s field observations does suggest 
that the bend mechanism acts in the sense predicted by the present theory. 

An attempt to account for the effect of channel-bed forms of the alternate-bar type 
on flow in meander bends was performed by Hasegawa & Yamaoka (1980) in a paper 
that was pointed out to the present authors by one of the referees. The analysis of 
Hasegawa & Yamaoka (1980) will be discussed in detail in the following sections. It 
suffices here to say that it does not seem to predict any resonance nor explain the 
details of the interactions between bar propagation and bend development. 

During revision of the present paper, one further interesting contribution 
(Kitanidis & Kennedy 1984) has been published where an attempt has been made to 
extract a common cause of the tendency to meander of both alluvial and incised (rock 
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FIGURE 1. Sketch of the channel. 

or ice) streams. The analysis of Kitanidis & Kennedy does not allow the channel 
bottom to vary (i.e. the cross-section is assumed to remain of rectangular form), so 
that the only factor leading to bend erosion is secondary flow associated with 
curvature. Though the latter effect is an important common feature of all meandering 
channels, the present results suggest that in the alluvial case a distinctive feature, 
bed deformation, plays an equally fundamental role. 

The procedure employed in the rest of the paper is as follows. In 92 we formulate 
the problem of shallow-water flow in sinuous channels with erodible boundaries. In  
93 we discuss the relationships employed to describe friction losses, sediment 
transport and bank erosion. Section 4 is devoted to the formulation and solution of 
the ‘bend ’ theory. The resonance phenomenon is thus detected, which is interpreted 
in terms of ‘bar’ stability theory in $5. Finally ($6) some discussion on the difficulties 
associated with any attempt to describe the main features of the natural phenomenon 
concludes the paper. 

2. Formulation of the problem 
In  order to develop a unified approach to ‘bar ’- and ‘ bend ’-instability theories, we 

consider the flow in a sinuous channel with constant normal width 2B*, small 
curvature and erodible boundary (figure 1). We note that the ‘bar’ approach will 
be recovered in the limit of vanishing curvature and fixed sidewalls. 

We assume that the longitudinal channel axis at the level of the undisturbed bed 
has constant slope S and describes a curve in space, the projection of which onto a 
horizontal plane is defined by the equation 

.,*(a*) = R: ro(5*), (1) 

where r,* is the radius of curvature with characteristic value R,* (in the following 
assumed to be twice the radius at the bend apex) and s* is a longitudinal coordinate 
defined along the projected axis. A convenient orthogonal coordinate system is 
(s*, n*, y*), where n* is the radial distance from the longitudinal axis and y* is a 
vertical coordinate positive in the direction opposite to gravity. We restrict our 
analysis by the assumption 

R* 

We point out that in the bend theory, which will be treated in $4, R,* and hence v 
are slowly varying functions of time. Furthermore, the width of the channel is taken 
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as large enough for the flow to be modelled as two-dimensional, though account will 
be taken of the influence that the component of secondary flow with zero depth 
average exerts on sediment transport. In  other words, we describe the flow every- 
where except for those layers adjacent to the walls where vertical velocities cannot 
be neglected. 

The St Venant equations of quasisteady shallow-water flow in a sinuous channel 
with slowly varying erodible bottom are written in terms of the above coordinate 
system in the form 

In (3) p is water density, U and V are depth-averaged velocity components in 
the axial (8) and radial (n)  directions; 7, and 7, are bottom shear stresses; H is 
water-surface elevation ; D is local depth ; q8 and q, are sediment flow-rate components 
in the axial and radial directions. The variables have been made non-dimensional in 
the form 

(U*, V*) = U,*(U, V ) ,  (h*,D*) = D , * ( e H , D ) ,  

where U,* and D,* are average speed and depth for the uniform unperturbed flow, 
(p,,d,*) are sediment density and characteristic size respectively, and F,, is the 
unperturbed Froude number. Finally, go is the ratio between the scale of sediment 
discharge and the flow rate, and /3 is a width ratio. We find 

where p denotes sediment porosity. 
The boundary conditions to be associated with the system (3) express the physical 

requirement that the channel walls be impermeable both to the flow and to the 
sediment. They read 

v = qn = 0. (6a, b )  

We point out that these conditions hold also if the banks are assumed to be erodible, 
the rate of bank erosion being too small to induce any appreciable effect on the flow 
field. 

Finally, two further integral conditions are required in order to 'close ' the problem. 
They express the requirement that flow rate and average valley slope are not affected 
by the development of perturbations either of the flow field or of the boundary 
configuration. These conditions will be made explicit in the following sections, where 
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their validity will be discussed in the context of the perturbation scheme employed 
to derive the solution. 

In  order to make any progress with the above problem, we need to formulate 
expressions that relate shear stresses 7 ,  sediment flow rate q and rate of bank erosion 
to the flow characteristics. This is discussed in $3. 

3. Hydraulic resistance, sediment transport and bank erosion 
3.1. Hydraulic resistance 

We express the shear stress 7 in terms of a friction coefficient C defined by the 
relationship 

(7) 

The structure of the dependence of C on the flow parameters is not known for general 
flow conditions. However, we will take advantage of the fact that the flow to be 
studied is only slightly perturbed with respect to the case of steady flow in straight 
channels. Thus we will evaluate C in a neighbourhood of the unperturbed uniform 
configuration by expanding the function C in Taylor series. 

7 = (T8, T n )  = (U, V )  (V+ vz)+C.  

In  the plane-bed regime we employ Einstein's (1950) formula 

where the roughness parameter has been put equal to 2.5d,* after Engelund & 
Hansen (1967) and a non-dimensional sediment diameter d,  = d,*/D: has been 
introduced. 

For a dune-covered bed we follow Engelund & Hansen (1967) and write 

8' = 0.06+0.482, (9) 

where 8 is Shields parameter defined as 

Knowledge of the flow behaviour in the ripple regime is not sufficient to provide 
completely reliable resistance laws. However, since some experimental data that will 
be employed to test the present theory refer to experiments with ripple-covered beds, 
we decided to employ Richardson, Everett & Simons' (1967) formula, which reads 

where 

7.66-E)  logD*+-+11, 0.13 &=(  A A 

and the constants are dimensional and expressed in English units. 

3.2. Sediment transport 
The distinct role of sediment transported as bed load and sediment transported in 
suspension in connection with bar-instability theory was emphasized by Fredsee 
(1978). The above distinction may have an important influence on the stability limits, 
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especially for large values of 8. However, we will ignore it in the following. Indeed, 
while complicating the analysis, it is not an essential feature to retain for our main 
purpose, which is to investigate the relationship between bar and bend instabilities. 

In  contrast, a crucial effect to be accounted for is the influence that secondary flow 
and transverse bed slope exert on the direction and intensity of bed-load motion. In 
this respect a convenient assumption for q is 

q = (ps, p,) = (cos 8, sin 8) Q,, (14) 

where Q, is a function describing bed-load transport in the unperturbed uniform 
configuration and 6 is the angle between the average particle path and the 8* 

direction. This angle differs in general from the angle x that the local direction of 
shear stresses forms with the s* direction. 

It can be shown that S and x satisfy a relationship of the form 

r a ( l q  H - D )  
#I an ' 

sin& = sinx-- 

which can be obtained by imposing the dynamic equilibrium of a spherical particle 
uniformly translating along a plane tangent to the bed. 

The parameter r was given the form (tan$)-l, with $ the dynamic friction angle, 
by Engelund (1974) in his work on bed topography in a meandering channel. The 
latter expression was found by evaluating the forces acting on a sediment particle 
and formed the basis for a quite successful prediction of bed topography in a 
curved alluvial stream. However, as discussed by Parker (1984), some invalid 
approximations were made to derive the above result. In  particular, the bed shear 
stress was assumed to be parallel to the particle drag. 

Kikkawa, Ikeda & Kitagawa (1976) developed a more detailed analysis of the force 
equilibrium of a bed particle along the longitudinal and transverse directions tangent 
to the bed. Thus they were able to express tan8 and the sum of the local deviation 
from the longitudinal direction of the fluid velocity at the bed level and of a 
contribution associated with the transverse bed slope. The latter was of the form 
- c 8 ' - f  a(lq H -  D)/an, with c a function of the lift and drag coefficients of the particle 
and of various flow parameters. 

Engelund (1981) recently reexamined the problem, assuming the particle drag to 
be parallel to the velocity of the fluid relative to the particle. This led Engelund to 
express tan Q, in terms of 8' in the form 

tan Q, = 1.68'1. (16) 

This result was found to be in satisfactory agreement with experimental data. Thus, 
using the results of Kikkawa et al. (1976) and Engelund (1981), recently reconsidered 
by Parker (1984), we conclude that the parameter r in (15) can be given the form 

r = r'ef-4, (17) 

with r' a constant in the range O . H . 6 .  
For sinx, we write 

V v D  
(V+ V ) /3 r,+vn' 

sinx = 2 4-a-- 

distinguishing between a contribution associated with the depth-averaged flow 
field and a contribution due to the zero-average helical flow occurring in curved 
channels. The latter has been estimated by employing an expression derived for fully 
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developed flow in circular channels. The constant a ranges between 7 and 12, 
depending on the turbulence-closure model employed (see Rozovskii 1957 ; Engelund 
1974; De Vriend 1977). We shall assume for a the value 7 (Engelund 1974), which 
leads to satisfactory agreement with experimental data. 

The undisturbed sediment load function @ will be given a different form depending 
on the bed configuration. 

In the plane-bed regime we employ the Meyer-Peter-Muller formula in the form 
given by Chien (1954), namely 

@ = 8(8-0.047)!. (19) 

In  the ripple and dune regimes Engelund t Hansen’s (1967) formula will be used : 

0.05 a 
@ = -  

C 

3.3. Bank erosion 
Denoting by (x;, y;) the Cartesian coordinates of the bank, the rate of bank erosion 
(deposit) is defined in the form of Ikeda et al. (1981), namely 

aY,* 
g at* 

Y * = n  -, 

where nu is the cosine of the angle between the normal to the bank and the coordinate 
axis y*, and [* is positive (negative) if bank erosion (deposit) occurs. The problem 
is then that of evaluating f,*. 

Fortunately, in order to determine the conditions for maximum bend amplification, 
we do not actually need to quantify [*, but rather to express its dependence on the 
erosion intensity associated with the flow. The latter is due to the action of shear 
stresses on the channel banks. Thus we would need a three-dimensional model of the 
flow field capable of predicting the distribution of shear stresses. However, continuity 
implies that the vertical component of the flow field close to the banks is driven by 
the perturbation of the longitudinal component, and is relatively small with respect 
to the latter. Thus it appears that the major contribution to erosion is associated with 
the longitudinal shear stress T:, which is satisfactorily estimated by the present 
two-dimensional model. 

In the following we assume that, for small perturbations of the channel axis, the 
rate of bank erosion [* is a function of the longitudinal shear stress T: near the bank. 

Thus, following a procedure similar to that developed by Ikeda et al. (1981) (p. 368), 
and defining an ‘erosion coefficient’ E, we can write 

{* = E[&7,*In-1, (22)  

where 87: is the perturbation of T! due to secondary flow. We implicitly assume that 
the unperturbed channel configuration is in equilibrium, i.e. erosion is only caused 
by secondary flow associated with curvature. 

It may be useful to point out at this stage that the definition (22) does implicitly 
account for the expected deepening of the cross-section close to the outer bank. 
Indeed, an increase of water depth is wsociated with an increase of longitudinal 
velocity, which leads to increasing longitudinal bed shear stresses (see (7)). This effect 
could not be included by Kitanidis & Kennedy (1984)’ who did not account for bed 
deformations. 
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4. Bendtheory 
We examine a channel whose axis defined as in 92 (see (1)) is assumed to exhibit 

small-amplitude initial perturbations with respect to the straight configuration. 
We want to investigate the conditions required for the above perturbations to grow 

in time. We Fourier-analyse the function $-l(&) and consider the general Fourier 
mode defined by 

where A, is a non-dimensional meander wavenumber scaled by the half-width B* 
of the channel. 

Flow in model bends of this kind was studied theoretically and experimentally by 
Engelund (1974), Hooke (1974) and Gottlieb (1976). More recently Ikeda et al. (1981) 
in their ‘bend’ theory used an approach similar to that of Engelund. Their analysis 
will be discussed below in the light of the present formulation. 

The solution of the problem posed in 992 and 3 can be derived, assuming the flow 
to be developed in the s-direction and taking advantage of the small-v assumption. 
A regular expansion in powers of v could then be set up in the form recently proposed 
by the present authors (Blondeaux & Seminara 1983~) .  However, this procedure 
would lead to comparing the bend amplification of meanders characterized by the 
same curvature ratio and different wavelengths and amplitudes. 

It appears to be physically more sensible to compare the amplification rates of 
meanders with given (small) amplitudes as their wavelengths and curvatures vary. 

Thus we assume that the equation of the channel axis can be written in the 
non-dimensional form 

*, (23 1 r;-I= R*-I(t) eiQm 8-wt) + c.c 
0 

ya = ~ ( t )  expi(kx-uwt)+c.c., (24) 

€ 4  1. (25) 

v = k2s, (26) 

A, = k +  O(sak2),  (27) 

s = z+O(s2k2). (28) 

where ya, E ,  k and x are quantities normalized by the half-width B*, and 

Comparison of (24) and (25) with (23) implies 

Thus it appears that the channel slope S, the average depth D:, the average speed 
U,* and thus the average Froude number Fo undergo variations due to the bend growth 
which are O(s2k2). They are negligible within the present approximation scheme. 
Moreover, the relationship (26) implies that in order for the amplitude E to be small, 
v and k should satisfy the inequality 

A, - k v;, (29) 
i.e. e2k2 4 v. 

In other words, a small wavenumber k is described by the present model provided 
the curvature ratio v keeps much smaller than k2. 

Having stated the above limits and assuming the flow to be fully developed in the 
s-direction, we set up the following regular expansion for (U, V ,  H, D) in powers of E :  

( U ,  V ,  H ,  D )  = (1,0, H,, 1)+s[(S1, Y,, Hl, B1) expi(Ams-wt)+c.c.]+O(s2), (30) 
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having assumed the conditions (25)-(29) to be satisfied. If we substitute from (30) 
and (26) into the governing differential system, at leading order (e0) we find the 
uniform-flow solution 

L =  

where /3 and C, are constant within the present approximation scheme. Proceeding 
to the O(E)  problem, we find 

-a1 0 a2 a3 

0 
d 

a -  
dn 

0 

0 a4 

d 
dn 
- 

d d2 d2 
as a,& - a * e  a %,+a, dn2. 

gl = O  ( n = f l ) ,  

a, = xo(.s2-l), a4 = iA,+Xo 

ab = 1 ,  

a, = Go, 

a, = ih,, 

r 
a8 = Go - 

B' 

We point out that the top term in the column vector on the right-hand side of (32a) 
has not been considered in previous theories. It accounts for the effect of cross-stream 
variation in leading-order water-surface slope. 

It is convenient to write the homogeneous ordinary differential operator L in the 

t 

, (33) 

(34) 
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In  the above, xo = /3Co, and (sl, s2) and ( fl,f2) are the coefficients of the leading-order 
terms in the expansions for 7, and @ in powers of E ,  namely 

( 3 5 4  

(35Q 

r ,  = C, { 1 +s[(s,  Sl +s2 9,) exp i(A, s - a t )  + c.c.]} +O(e2), 

@ = Go{ 1 + E [ (  f, 2F1 +f2 9,) exp i(A, s--ot) + c.c.]}+ 0(e2 ) ,  

where 
2 

s -  
- 1-S,EP2’ 

fl = 94 ‘0’1, f 2  

91 

1-@,ga2’ 
s2 = 

(36) 

The system (32a)  is solved below in closed form subject to the boundary conditions 
(32b, c )  and the following integral conditions: 

They state that flow rate and average valley slope are not affected by the 
perturbations either of the flow field or of the bed topography. 

Before we proceed to discuss the solution, it seems convenient to make some 
observations on the approaches employed in previous analyses of the same problem. 
We first analyse the perturbation scheme employed by Ikeda et al. (1981). They solved 
the equations for the fluid motion by decoupling the n-component of momentum 
equations from the remaining two equations, stating that the former contributes at 
first order whereas the latter contribute at  second order. However, in the light of the 
present formulation, it appears that the above procedure is only valid provided A, 
is small (though such that the condition (29) can still be satisfied). In fact, in this 
case, from (32) one readily finds that gal = O(A,) and &‘, - 9, - 9, = O( 1). However, 
in order for the perturbation scheme to be rational, we then require that the O ( d , )  
terms retained be much larger than those O(e2) neglected, i.e. A, % 8. Furthermore, 
the ponditian (26)  restricts the validity of the analysis to the case of extremely small 
o(A&) curvatures. Furthermore, in the approach of Ikeda et al. the bed profile was 
assumed rather than found by coupling the sediment motion to the flow field. Also, 
the quantity ro/ (ro + vn) was not retained in their formulation, and the friction factor 
was assumed to be constant for small perturbations of the uniform configuration. 

The above restrictions can be readily overcome by solving the problem formulated 
in $52 and 3 in closed form for an arbitrary Am subject to the condition (29), and 
indeed such an extension is very useful, as anticipated in f 1. In fact, a comparison 
is then justified with bar theories, where the assumption of small A, is not made. 
Furthermore, by coupling the sediment-motion problem to the flow problem no 
information is lost on the response of the whole system to perturbations. This leads 
to the detection of the resonance phenomenon mentioned in $1. 

The paper by Hasegawa & Yamaoka (1980) treats a problem which reduces to that 
tackled by Ikeda et al. (1981) when the amplitude of the ‘pseudobars ’ considered there 
vanishes. In  this case there are many common features between the above approaches. 
In  fact, both: 

do not include continuity equation of sediments and neglect the effect of transverse 
bed shear stress ; 

assume the friction factor to be constant in the process of linearization ; 
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neglect the effect of curvature on transverse surface slope (see the right-hand side 
of the first row of (32~) ) .  
However, Hasegawa & Yamaoka take inertia into account in the transverse- 
momentum equation, and solve the linearized system thus obtained by an approximate 
procedure, essentially by expanding the solution in Fourier series in the transverse 
coordinate and truncating the expansion at the leading term. The accuracy of this 
procedure can be judged by considering that in the forcing terms the quantity n is 
approximated by 87c-, sin@n in the interval [- 1,1]. Indeed, there is no need to 
resort to any approximation in order to solve the linearized system, even in the 
complete form considered in the present formulation. 

In  fact, by simple manipulation the system (32)-(37) is reduced to the following 
4th-order non-homogeneous ordinary differential problem for g1 : 

'(38a) 

where To, r,, r, and r3 are the following functions of the coefficients at (i = 1, . . . , 11) : 

The system (38a-c) is readily solved, and gives 

r, 
r, gl = -+ y1 cosh A, n + y, cosh A, n, 

where A, = {&[-q+(r:-4&)+]P, A, = {&[-r;-(r;-4r,f}+, 

A: GIG + r, A; GIT2 + r, 
y1 = (A: - A:) cosh A, ' " = (A: - A:) cosh A, 

It appears that 3, is an even function of n. Using the solution for g1, we integrate 
the second row of (32a) and find H, in terms of an arbitrary constant. Finally 9, 
and g1 are obtained from rows 3 and 4 of (32a). The integral condition (37a) then 
determines the arbitrary conatant, which is found to vanish. This leaves 9, and g1 
as known odd functions of n such that the second integral condition (37b) is 
authomatically satisfied. We find 

gl = 6, n + 6, sinh A, n + 6, sinh A, n, (42b) 

(424 9 1  = - - 8 , n - - ( ~ + R , )  4 Y1 sinhA,n- 
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0.30 r 
t 

0.18 

0.06 = - 
5 
2 

-0.06 

-0.18 

-0.30 

C n  

8 = 0.25, do = 0.005 

Ell 
8 = 0.25, do = 0.005 

FI~URE 2. Comparison between the present solution (constant v) (-) and Engelund's (1974) 
results (-. -.-. -. ) for the amplitude of the longitudinal component of perturbation velocity in 
phase with curvature. Calculations were performed assuming the bed to be plane. 

where 

- a3-a 

(434  

In  order to check the validity of the above results, they were compared in a 
preliminary version of the present paper (Blondeaux & Seminara 1983 b) with 
Gottlieb's (1976) experimental findings. The agreement was found to be satisfactory 
with r r  = 0.5: a point bar is formed at the convex bank and erosion occurs at the 
outer bank. Furthermore, bed elevations are predicted fairly accurately, though 
experimental values are somewhat delayed spatially with respect to the theoretical 
ones. 

In figure 2 we show a comparison with Engelund's (1974) theoretical results 
performed keeping v constant (which leads to the monotonic trend of the solution). 
The quantity that is compared is the real part of 46,, i.e. the amplitude of the 
longitudinal perturbation velocity in phase with the curvature. It appears that, in 
a neighbourhood of ' critical ' values of wavenumber and width ratio for given 8 and 
d,, a resonance phenomenon occurs. Furthermore, as /? increases keeping the other 
parameters constant, resonance shifts to increasingly higher values of Am. This 
feature did not emerge in the approaches of Engelund (1974), Ikeda et al. (1981) and 
Hasegawa & Yamaoka (1980) owing to the approximations already mentioned. 

Let us finally come to the crucial question regarding the conditions for maximum 
amplification of the developing meander. One readily finds 

/ ys = ya + 1 + O(E2k2), 

?zy - 1 + 0 ( € 2 k 2 ) .  
(44) 
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-2.4 

-3.2 

-4.0 
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- 
- 
- 
- 

\ 8 = 0.25, ds = 0.005 - 
- 
- 

' O F  8 I 

-8 

- 10 

4.0 

1.6 

8 = 0.25, ds = 0.01 

From (21), (22), (24) and (35a) it follows that 

(45) 
1 de --- io = EpU; Co(S1 Fl + 8,9J,-, . 
E dt 

The rate of bend amplification is then defined by the real part of the right-hand side 
of (45). Looking for the maximum of the latter quantity as A, varies for given 8, 
/3 and ds leads to selecting the preferred meander wavelength. Figure 3 shows that 
resonance controls this selection mechanism, and the growth rate incremes as friction 
increases, in agreement with previous theoretical and experimental evidence. 
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FIQURE 4. The meander-propagation speed (scaled by Ep U,* C,) is plotted versus A, for given values 

of p, 8 and d,. Calculations were performed assuming the bed to be plane. 

The imaginary part of the right-hand side of (45) is equal to -A, c,, c, being the 
non-dimensional meander propagation speed scaled by U,*. Figure 4 shows that c, 
is positive, as expected, in the range of A ,  close to the resonant peak, thus predicting 
that meanders migrate downstream. 

In figure 5 we plot some results for the present resonant wavelengths predicted by 
the present theory and compare them with those of Ikeda et al. (1981) and Kitanidis 
& Kennedy (1984). We point out that the discontinuities mark the conditions where 
higher resonances take over. It also appears that the resu1ts:of Ikeda et al. and 
Kitanidis & Kennedy smooth out the effect of the resonance as expected. The 
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estimate of meander wavelength emerging from figure 5 will be shown to be 
significantly lower than that arising from bar theories. 

It remains to clarify the origin of the above resonance phenomenon. This is 
discussed in $5.  

5. Bar theory: the origin of resonance 
In  order to answer the question formulated at the end of $4 we need to examine 

the problem of alternate bar formation in straight alluvial channels. The latter has 
been the subject of many theoretical investigations, and can be considered aa 
qualitatively solved after Fredsoe’s (1978) last remarkable contribution. However, 
by reconsidering this problem in relation to that tackled in $4, we will show that 
perturbations of the alternate bar type are forced by curvature in flow in sinuous 
channels at resonant conditions. These resonant disturbances are not characterized 
by maximum growth rate nor do they propagate like alternate bars : on the contrary 
they are steady and non-amplifying. 

Let us consider flow in a straight alluvial channel with constant width and 
non-erodible banks. Under the assumptions described in $92 and 3, the differential 
system that governs the problem is readily found by letting v vanish in the equations 
discussed there. 

We want to investigate the conditions required for the unperturbed uniform flow 
(U, V ,  D,  H )  = (1,0,1, H,) to lose stability to perturbations periodic in the 8-direction 
and small enough for linearization to be a valid approximation. As usual, we perform 
a normal-mode analysis of the above perturbations and write 

(u, v,o,H) = ( 1 , 0 ~ 1 , H o ) + ~ [ ( ~ , , ~ , , d o , h , )  exp[i(hb5-at)]+c.c.], (46) 
where hb is a non-dimensional wavenumber of the developing bar and -iS2 is a 
complex number, the real part of which determines the growth rate of the perturbation 
while its imaginary part defines its non-dimensional frequency. On substituting from 
(46) into the governing equations, we find the following eigenvalue problem at O(s) : 

= 0, ( 4 7 4  

where Lb is the operator obtained by replacing A,  with hb in the operator L defined 
by (33). The differential system (47a-c) poses an eigenvalue problem for -iQ. We 
solve it by Fourier-analysing the eigenfunctions (uo, wo, h,, do)  in the interval [ - 1,1]  
and examining the response of each mode independently. The boundary conditions 
suggest that _ _  

(f,, h,, do) sinircmn (m odd), 

(f,, h,, do)  cosrcmn (m even), 
(Uo,h,,d,) = 

go cos ixmn (m odd), 

go sin rcmn (m even), wo ={ (49) 
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m being the parameter that determines the channel pattern. More precisely m = 1 
corresponds to incipient alternate-bar formation while m > 1 implies tendency of the 
channel to braid. Substituting from (48) and (49) into (47), we end up with an 
algebraic eigenvalue problem leading to an eigenrelation among the parameters - if2, 
m, 8, /3 and d,, which reads 

-- is2 -- - r A, Ak + iA, A& +A3 A, + iA, 
Qo @O 1 bla + B, + i ~ ,  A, + B, A;+ i ~ ,  A; 

, 

The eigenrelation (50) allows one to  determine the selected mode m, and its wave- 
length A,, as that characterized by maximum growth rate for given 8, d, and /3. 
Incidentally, we notice that the influence of transverse bed slope is clearly ex- 
hibited by (50) as the stabilizing effect associated with the first term of its right-hand 
side. The latter increases as M increases and /3 decreases. This leads the theory to 
predict, as Fredsrae (1978) pointed out, the existence of three regimes: straight, i.e. 
absence of bars (Re (-is1 < 0 for any m), alternate bars (m = 1 is the most unstable 
mode), braiding (maximum growth rate corresponding to m > 1). The above regimes 
can be associated with distinct regions in the (B, @)-plane for fixed d,. The lines 
separating different regimes were found to be in good agreement with those given 
by Fredscae (1978) for the case d, = and no transport in suspension. However, 
our results appear to depend markedly on the value chosen for d,. In  other words, 
the attempts to establish criteria to characterize the various morphologic regimes of 
rivers involving just two parameters (see e.g. Parker 1976; Hayashi & Ozaki 1980; 
Kishi & Kuroki 1980) does not appear to be adequate. 

In  order to substantiate our results, we show in figure 6 a comparison between the 
wavelengths of alternate bars as predicted by the present theory and those 
experimentally detected by Chang, Simons & Woolhiser (1971), Ikeda (1984) and 
other Japanese authors whose results are reported in detail by Ikeda (1984). The 
agreement appears to be satisfactory. Indeed, in some experiments the particle 
Reynolds number was fairly low, which may influence the particle dynamics. We also 
point out that the values of 8 were in most cases less than 0.3, whence the role of 
transport in suspensions was presumably modest as assumed above. 

Let us finally come to the crucial point regarding the origin of the resonance 
phenomenon arisen in our bend theory. A glance at systems (32) and (47) suggests 
that if -if2 vanishes the system (47) coincides with the homogeneous part of the 
system (32). Under these conditions, curvature, i.e. the non-homogeneous part of (32), 
‘forces’ a ‘natural ’ solution which represents steady and non-amplifying bar 
perturbations. Such resonant conditions are not generally met exactly. However, a 
quasiresonant peak occurs whenever the relevant parameters fall within a neigh- 
bourhood of the critical values, as it appears from figure 2. The presence of more than 
one peak is then readily explained in terms of the different possible bar modes. 

The physics behind the resonance phenomenon is very simple. The straight-channel 
configuration with an unperturbed bed (except for bedforms of lengthscale much 
smaller than B*) is not stable in general. This implies that, under suitable and quite 
common circumstances, a wide spectrum of large-scale bed perturbations may grow 
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FIGURE 6. The wavelength of alternate bars calculated by the present theory (L*/ZB*), is compared 
with experimental values (L*/ZB*), obtained by various authors. The daahed region includes data 
such that the theoretical value differs from the experimental one by an amount which is less than 
50% of the latter. Calculations were performed assuming the bed to be plane. 

‘spontaneously’ in time as a result of a classical erosion4eposition process: they 
correspond to what we called ‘natural’ solutions. For given flow parameters there 
generally exists a wavenumber range of ‘alternate bar’ perturbations, which are 
characterized by positive growth rates and variable propagation speed (see figure 7). 
Provided no forcing occurs from any external cause, the wavenumber ‘ spontaneously ’ 
selected (i.e. that actually seen in straight channels) obviously corresponds to those 
disturbances that exhibit the maximum rate of amplification; they are also found 
to propagate downstream. However, flow and bed topography in meandering 
channels also exhibit an ‘ alternate ’ character, with scouring and bar deposition 
occurring alternately close to the outer and inner banks respectively. What di- 
stinguishes the ‘point-bar ’ structure of weakly meandering flow from alternate bars 
is essentially the quasisteady character of the former, i.e. the fact that it neither 
amplifies nor propagates (except for the slow bend-erosion process). However, it 
should be noted that among the ‘natural modes of vibrations of the system’ (the 
straight channel) there also exist in general quasisteady bar perturbations - those 
characterized by values of the wavenumbers such that both Re (-in) (the amplifi- 
cation rate) and Im (-ill) (the frequency) are ‘small’ (see figure 7). Then if the 
wavenumber of the channel falls within the latter range the alternate flow pattern 
originated by curvature tends to reinforce a ‘natural’ tendency of the system which 
leads to resonance. 
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FIGURE 8. The non-dimensional meander wavelengths (L*/2B*)* as predicted by the present ‘bend ’ 
theory ($4) are compared with the experimental results (L*/2B*), of Ackers & Charlton (1970) (A). 
The dashed region includes data such that the theoretical value differs from the experimental one 
by an amount which does not exceed 30 % of the latter. Also plotted are the wavelengths of alternate 
bars predicted by the present ‘bar’ theory ($5) versus experimental values (A). Calculations were 
performed assuming the presence of ripples as indicated in the paper by Ackers & Charlton (1970). 
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The question to be answered is then : in the process of meander formation does the 
channel select the above wavelength which obviously maximizes bend erosion ? In  
order to get an at least ‘indirect’ answer to the above question, we finally attempt 
to compare the wavelength predicted by our bend theory with experimental data and 
with values predicted for alternate bars. This comparison is shown in figure 8 using 
data reported by Ackers BE Charlton (1970). 

Figure 8 appears to support the idea that a ‘bend ’ rather than a ‘bar ’ mechanism 
prevails. In  fact, the observed wavelengths compare uniformly better with the values 
predicted by our bend theory than with those characteristic of alternate bars. The 
agreement is to be considered quite satisfactory if account is taken of the uncertainty 
associated with the evaluation of friction losses, which in most experiments were 
mainly due to the presence of ripples. 

6. Discussion 
The analysis developed in the previous sections and the comparison with experi- 

mental data seems to support the idea that alternate-bar formation and bend 
amplification are controlled by two distinct mechanisms : instability in the former 
case, resonance in the latter. 

Furthermore these mechanisms are somewhat interrelated, as discussed previously. 
Incidentally, it may be of interest to point out that the relation between the latter 
mechanisms can only be detected if the formulation of the ‘bend’ theory includes 
the dependence of both friction factor and bed load function on the flow parameters. 
In fact, as shown originally by Callander (1969), alternate-bar formation is extremely 
sensitive to the above dependence. In other words, if C and @ are assumed to be 
constant the straight configuration is always found to be stable to ‘ bar ’ perturbations 
and no resonance may occur. 

A tentative conclusion that might be drawn from the above findings is that, 
provided bend amplification is allowed to develop, the transient process starting from 
the straight configuration initially perturbed by the presence of alternate bars should 
tend to a steady state determined by the ‘bend ’ mechanism. A laboratory experiment 
under controlled conditions is ultimately required in order to provide a final check 
of the above conclusion. 

The reader may have noticed that, while laboratory observations have been used 
to substantiate our theoretical findings, a comparison between theoretical predictions 
and field data has not been attempted. This is because we feel that such a comparison 
would suffer from several difficulties associated with various features of the natural 
phenomenon that are not accommodated in our model. 

The main difficulty arises when one is forced to choose a ‘representative’ discharge 
of the river to feed in the calculations. By this procedure i t  is implicitly assumed that 
the effect of the variable regime of a river can be satisfactorily modelled in terms of 
a ‘formative ’ discharge. There is not enough experimental or theoretical evidence to 
justify the above approach, which is then followed on empirical grounds, and this 
leads to different choices of the formative discharge by various authors, either based 
on geometrical criteria (bankfull discharge) or on statistical considerations (mean 
annual discharge). The available data do not always correspond to the same choice, 
which complicates any attempt a t  comparison even further. 

Moreover, the theory concerns the incipient formation of meanders, whereas field 
data often refer to fully developed meanders. It has been observed that meander 
wavelength does not change much as its amplitude grows, but the same statement 
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does not apply to the variations of slope, depth and width ratio. Data found in the 
literature should often be modified in order to reproduce the initial conditions of the 
process of meander formation. However, information is not always sufficient to allow 
such corrections. 

Further sources of inaccuracy may be associated with the impact that artificial 
human actions may have had on the evolution of the river or with constraints imposed 
on the latter by possible non-uniformities of the geological structure of the valley. 
These features are often quite difficult to evaluate. 

There are also difficulties related to the evaluation of friction losses and sediment 
transport in actual field conditions and to the important role of suspension load 
neglected in the present work. 

We feel that further research is needed to understand each of the above effects 
before the ambitious programme of gaining a general understanding of meander 
formation under natural conditions can be fulfilled. 

In  this respect substantial improvements of the present model can be accomplished 
by investigating the effects of relaxing the assumptions of fully developed flow (some 
steps in this direction have been made by De Vriend & Struiksma 1983), linear 
interaction between bed topography and flow field, and negligible suspended load. 
Also, a better description of the flow structure close to the sidewalls and of the way 
it determines bank erosion is needed. 

Finally, we notice that the perturbation scheme employed in our bend theory 
breaks down close to resonance. It can be shown that an O(d) ‘natural’ term arises, 
the amplitude of which can be found by expanding the solution in powers of d and 
imposing a solvability condition on the non-homogeneous (‘forced ’) problem found 
at O(s). 
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